General Description

The AME7730 is a charge pump voltage doublers that delivers a regulated output. No external inductor is required for operation. Using three small capacitors, the AME7730 can deliver up to 100 mA to the voltage regulated output. The AME7730 features very low output ripple and high efficiency over a large portion of its load range making this device ideal for battery-powered applications. Furthermore, the combination of few external components and small package size keeps the total converter board area to a minimum in space restricted applications.

The AME7730 contains a thermal management circuit to protect the device under continuous output short circuit conditions.

The AME7730 is available in SOT-26 / TSOT-26 package and is rated from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

■ Features

- Input Voltage Range: 2.7V to 5 V
- Accurate to with $\pm 4 \%$
- Output Current: 100 mA with $\mathrm{V}_{\text {IN }}>=3.0 \mathrm{~V}$

50 mA with $\mathrm{V}_{\text {IN }}>=2.7 \mathrm{~V}$

- 1 MHz Switching Frequency
- Shutdown Mode $<1 \mu \mathrm{~A}$
- Short Circuit Protection
- Over Temperature Protection
- All AME's Lead Free Product Meet RoHS Standards

Functional Block Diagram

Typical Application

Applications

- Cellular Phones
- Digital Cameras
- PDAs LCD displays
- LED / Display Back Light Driver
- LEDs for Comera Flash

Pin Configuration

SOT-26/TSOT-26 Front View			
6	5	4	AME7730AEEY
-	\square	[1]	1. OUT
AME7730			2. GND
			3. EN
1	-	F	4. C-
	2	3	5. \mathbb{N}
			6. C_{+}

* Die Attach:

Conductive Epoxy

Pin Description

Pin Number	Pin Name	Description
1	OUT	Regulator Output Pin. $V_{\text {Out }}$ should be bypassed with a $10 \mu \mathrm{~F}$ low ESR ceramic capacitor
2	GND	Ground Pin Connection
3	EN	Enable Input. Active Low disable the regulator
4	C-	Pump Capacitor Negative Terminal
5	C+	Input Supply Pin. $V_{\text {IN }}$ should be bypassed with a $10 \mu \mathrm{~F}$ low ESR ceramic capacitor
6	Pump Capacitor Positive Terminal	

■ Ordering Information

Pin Configuration	Operating Ambient Temperature Range	Package Type	Number of Pins	Output Voltage	Special Feature
A 1. OUT (sot-26) 2. GND (TSoT-26) 3. EN 4. C- 5. IN 6. C_{+}	E: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	E: SOT-2X	Y: 6	500: V = 5V	Z: Lead free Y: Lead free \& Low profile

Ordering Information

Part Number	Marking* *	Output Voltage	Package	Operating Ambient Temperature Range
AME7730AEEY500Y	BCAww	5 V	TSOT-26	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
AME7730AEEY500Z	BCAww	5 V	SOT-26	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Note: ww represents date code and pls refer Date Code Rule on Package Dimension.
*A line on top of the first letter represents lead free plating such as $\bar{B} C A$
Please consult AME sales office or authorized Rep./Distributor for the availability of output voltage and package type.

Absolute Maximum Ratings

Parameter	Maximum	Unit
Input Voltage, Output Voltage, C-, C+	-0.3 to 5.5	V
EN	-0.3 to $\mathrm{V}_{\mathrm{IN}}+0.3$	
ESD Classification	B^{*}	

Note : Caution: Stress above the listed in absolute maximum ratings may cause permanent damage to the device. * HBM B: 2000V ~ 3999V

Recommended Operating Conditions

Parameter	Symbol	Rating	Unit
Ambient Temperature Range	T_{A}	-40 to 85	${ }^{\circ} \mathrm{C}$
Junction Temperature Range	T_{J}	-40 to 125	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {STG }}$	-65 to 150	${ }^{\circ} \mathrm{C}$

- Thermal Information

Parameter	Package	Die Attach	Symbol	Maximum	Unit
Thermal Resistance* (Junction to Case)	$\begin{aligned} & \text { SOT-26 } \\ & \text { TSOT-26 } \end{aligned}$	Conductive Epoxy	Өлc	81	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance (Junction to Ambient)			$\theta_{\text {JA }}$	260	
Internal Power Dissipation			P_{D}	400	mW
Solder Iron (10 Sec)**				350	${ }^{\circ} \mathrm{C}$

* Measure θ_{JC} on center of molding compound if IC has no tab.
** MIL-STD-202G 210F

AME7730

100mA Regulated Charge Pump

■ Electrical Characteristics
$\mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\mathrm{EN}}=3 \mathrm{~V}, \mathrm{C}_{\text {pump }}=1 \mu \mathrm{~F}, \mathrm{C}_{\mathbb{N}}=10 \mu \mathrm{~F}, \mathrm{C}_{\text {OUT }}=10 \mu \mathrm{~F}$, Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Parameter	Symbol	Test Conditions	Min	Typ	Max	Units
Input Voltage	$\mathrm{V}_{\text {IN }}$	$\mathrm{V}_{\text {OUT }}=5.0 \mathrm{~V}$	2.7		5	V
Output Voltage	$\mathrm{V}_{\text {OUT }}$	$\mathrm{I}_{\text {OUT }}<=50 \mathrm{~mA}, 2.7 \mathrm{~V}<\mathrm{V}_{\text {IN }}<5 \mathrm{~V}$	4.8	5	5.2	V
		$\mathrm{l}_{\text {OUT }}<=100 \mathrm{~mA}, 3.0 \mathrm{~V}<\mathrm{V}_{\text {IN }}<5 \mathrm{~V}$	4.8	5	5.2	
Quiescent Current	I_{0}	$2.7 \mathrm{~V}<\mathrm{V}_{\text {IN }}<5 \mathrm{~V}, \mathrm{l}_{\text {OUT }}=0 \mathrm{~mA}, \mathrm{~V}_{\text {EN }}=\mathrm{V}_{\text {IN }}$		60	100	$\mu \mathrm{A}$
Shutdown Current	$I_{\text {SHDN }}$	$2.7 \mathrm{~V}<\mathrm{V}_{\text {IN }}<3.6 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}, \mathrm{~V}_{\text {EN }}=0$		0.01	1	$\mu \mathrm{A}$
		$3.6 \mathrm{~V}<\mathrm{V}_{\text {IN }}<5 \mathrm{~V}, \mathrm{l}_{\text {OUT }}=0 \mathrm{~mA}, \mathrm{~V}_{\text {EN }}=0$			2.5	
Short Circuit Current Limit	Isc	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {EN }}=3 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\mathrm{GND}$		300		mA
Ripple Voltage ${ }^{1}$	$\mathrm{V}_{\text {RIPPLE }}$	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}, \mathrm{l}_{\text {OUT }}=50 \mathrm{~mA}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}$		25		mVp-p
		$\mathrm{V}_{\text {IN }}=3 \mathrm{~V}$, $\mathrm{l}_{\text {OUT }}=100 \mathrm{~mA}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}$		30		
Efficiency	η	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}, \mathrm{l}_{\text {OUT }}=50 \mathrm{~mA}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}$		90		\%
Frequency	fosc	Oscillator Free Running		1.0		MHz
EN Input Threshold High	V_{EH}		1.3			V
EN Input Threshold Low	V_{EL}				0.6	V
EN Input Current	$\mathrm{I}_{\text {en }}$	$\mathrm{V}_{\mathrm{EN}}=\mathrm{V}_{\text {IN }}, \mathrm{V}_{\mathrm{EN}}=\mathrm{GND}$			0.1	$\mu \mathrm{A}$
Over Temperature Shutdown	OTS			160		${ }^{\circ} \mathrm{C}$
Over Temperature Hysterisis	OTH			20		${ }^{\circ} \mathrm{C}$

Note 1: Effective series resistance (ESR) of capacitors is $<0.1 \Omega$.

AME, Inc.

Detailed Description

The AME7730 uses charge pump voltage doubler structure to boost an input voltage to a regulated output voltage. Regulation is achieved by decting the charge pump output voltage through an internal resistor divider network. A charge pump circuit is enabled when the divided output voltage below a preset trip point controlled by an internal comparator.

■ Short Circuit and Thermal Protection

The AME7730 has a thermal protection and shutdown circuit that continuously monitors the IC junction temperature. If the thermal protection circuit senses the die temperature exceeding approximately $160^{\circ} \mathrm{C}$, the thermal shutdown will disable the charge pump switching cycle operation, the thermal limit system has $20^{\circ} \mathrm{C}$ of system hysteresis before the charge pump can reset. Once the over current event is removed from the output and the junction temperature drops below $140^{\circ} \mathrm{C}$, the charge pump will the become active again. The thermal protection system will cycle on and off if an output short circuit condition persists. This will allow the AME7730 to operate indefinitely a short circuit condition with out damage to the device.

Shutdown Mode

A control pin EN on the regulator can be used to place the device into an energy-saving shutdown mode. In this mode, the output is disconnected from the input as long as $\mathrm{V}_{\mathbb{N}}$ is greater than or equal to minimum $\mathrm{V}_{\mathbb{N}}$ and input quiescent current is reduced to $1 \mu \mathrm{~A}$ maximum.

Capacitor Selection

For minimum output voltage ripple, the output capacitor $\mathrm{C}_{\text {out }}$ should be a ceramic, surface-mount type. Tantalum capacitors generally have a higher Effective Series Resistance (ESR) and may contribute to higher output voltage ripple. Leaded capacitors also increase ripple due to the higher inductance of the package itself. To achieve best operation with low input voltage and high load current, the input and pump capacitors ($\mathrm{C}_{\mathbb{N}}, \mathrm{C}_{\text {PUMP }}$ respectively) should also be surface-mount ceramic types. In all cases, X7R or X5R dielectric are recommended.

With ligh loads or higher input voltage, a smaller $0.1 \mu \mathrm{~F}$ pump capacitor ($\mathrm{C}_{\text {pump }}$) and smaller $1 \mu \mathrm{~F}$ input and output capacitor ($\mathrm{C}_{\mathbb{N}}$ and $\mathrm{C}_{\text {out }}$ respectively) can be used. To minimize output voltage ripple, increase the output capacitor $\mathrm{C}_{\text {out }}$ to $10 \mu \mathrm{~F}$ or larger.

Efficiency

The efficiency of the charge pump regulator depends on the applied input voltage, the load current, and the internal operation mode of the device.

The approximate efficiency is given by:

$$
\text { Efficiency }(\%)=\mathrm{V}_{\text {out }} / 2 \mathrm{~V}_{\text {IN }} \cdot 100 \%
$$

- Layout

Large ripple currents flow in the $\mathrm{V}_{\mathbb{N}}$ and $\mathrm{V}_{\text {out }}$ traces. To minimize both input and output ripple, keep the capacitors as close as possible to the regulator using short, direct circuit traces.

The trace lengths from the input and output capacitors have been kept as short as possible. A star ground system has been implemented, with GND pin as the center of the star. No ground plane is provided in other layers as this will provide capacitive coupling for noise spikes.

AME, Inc.

Output Voltage vs. Output Current

Efficiency vs. Supply Voltage

Oscillator Frequency vs. Supply Voltage

Supply Current vs. Supply Voltage

Efficiency vs. Load Current

Output Voltage vs. Input Voltage

Startup Time

Load Transient Response

Output Ripple

Startup Time

Load Transient Response

Output Ripple

■ Date Code Rule

Marking			Date Code		Year
A	A	A	W	W	xxx0
A	A	A	W	W	xxx1
A	A	A	W	W	xxx2
A	A	A	W	W	xxx3
A	A	A	W	W	xxx4
A	A	A	W	W	xxx5
A	A	A	W	W	xxx6
A	A	A	W	W	xxx7
A	A	A	W	W	xxx8
A	A	A	W	W	xxx9

■ Tape and Reel Dimension

SOT-26

Carrier Tape, Number of Components Per Reel and Reel Size

Package	Carrier Width (W)	Pitch (P)	Part Per Full Reel	Reel Size
SOT-26	$8.0 \pm 0.1 \mathrm{~mm}$	$4.0 \pm 0.1 \mathrm{~mm}$	3000 pcs	$180 \pm 1 \mathrm{~mm}$

Tape and Reel Dimension

TSOT-26

Carrier Tape, Number of Components Per Reel and Reel Size

Package	Carrier Width (W)	Pitch (P)	Part Per Full Reel	Reel Size
TSOT-26	$8.0 \pm 0.1 \mathrm{~mm}$	$4.0 \pm 0.1 \mathrm{~mm}$	3000 pcs	$180 \pm 1 \mathrm{~mm}$

Package Dimension

SOT-26

SYMBOLS	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	1.20REF		0.0472REF	
A_{1}	0.00	0.15	0.0000	0.0059
b	0.30	0.55	0.0118	0.0217
D	2.70	3.10	0.1063	0.1220
E	1.40	1.80	0.0551	0.0709
e	1.90 BSC		0.0748 BSC	
H	2.60	3.00	0.10236	0.11811
L	0.37REF		0.0146REF	
$\theta 1$	0°	10°	0°	10°
S_{1}	0.95 REF		0.0374 REF	

TSOT-26

Life Support Policy:
These products of AME, Inc. are not authorized for use as critical components in life-support devices or systems, without the express written approval of the president
of AME, Inc.
AME, Inc. reserves the right to make changes in the circuitry and specifications of its devices and advises its customers to obtain the latest version of relevant information.
© AME, Inc. , June 2007
Document: 1005-DS7730-A. 01

Corporate Headquarter AME, Inc.

2F, 302 Rui-Guang Road, Nei-Hu District
Taipei 114, Taiwan.
Tel: 8862 2627-8687
Fax: 8862 2659-2989

U.S.A.(Subsidiary)

Analog Microelectronics, Inc.
3100 De La Cruz Blvd., Suite 201
Santa Clara, CA. 95054-2438
Tel : (408) 988-2388
Fax: (408) 988-2489

